Base-catalysed Transformations of NN-Disubstituted o-Nitrobenzamides

By T. W. M. Spence and G. Tennant*

(Chemistry Department, The University, West Mains Road, Edinburgh 9)

In the formation of 2-alkoxy-1-hydroxyquinazolones by base-catalysed cyclisation of N-cyanomethyl-o-nitrobenzamide (I; $R^1 = R^2 = H$), interaction of the nitro-group with the side-chain cannot be preceded by isomerisation to an aci-nitro-tautomer. Cyclisation reactions of this type^{2,3} provide strong evidence for the ability of the intact nitro-group to function as the electrophile in aldol-type condensations. Further support for this contention has now been obtained from a study of the base-catalysed reactions of a series of NN-disubstituted-o-nitrobenzamides (I).

Treatment of the amides (I; $R^1 = Me$, CH_2Ph , or Ph, $R^2 = H$) with a variety of basic catalysts (ethanolic sodium ethoxide; aqueous sodium hydroxide; piperidine) afforded consistently high yields of products subsequently identified

as the 1-hydroxyquinazolinediones (IV; R = Me, CH_2Ph , or Ph). These potentially tautomeric heterocycles are presumably derived from an initially formed cyanoquinazoline 1-oxide (II; $R^1 = Me$, CH_2Ph , or Ph, $R^2 = CN$) by conversion into, and loss of hydrogen cyanide from, an adduct (III; $R^2 = CN$). The higher yields of cyclised products obtained from the amides (I; $R^1 = Me$, CH_2Ph , or Ph, $R^2 = H$) compared with the parent compound (I; $R^1 = R^2 = H$) may be attributed to the enhanced acidity of the methylene group in the former, and to the absence of side reactions stemming from the presence in the side-chain of a competing nucleophilic centre (i.e. ·N-H).

In contrast, the methyl-substituted amides (I; $R^1 = CH_2Ph$ or Ph, $R^2 = Me$) warmed with sodium ethoxide in ethanol afforded the indazolone derivatives (V; $R = CH_2Ph$

G. Tennant and K. Vaughan, J. Chem. Soc. (C), 1966, 2287.
G. Tennant, J. Chem. Soc., 1964, 2666.
J. D. Loudon and G. Tennant, Quart. Rev., 1964, 18, 409.

⁴ E. Bamberger, Ber., 1894, 27, 1548.

⁵ G. Heller and W. Boessneck, Ber., 1922, 55, 474.

⁶ F. Sachs and R. Kempf, Ber., 1902, 35, 2704.

or Ph). Since under similar conditions the amide (I; $R^1 =$ H, $R^2 = Me$) is converted into the oxide (II; $R^1 = H$, $R^2 = Me$). indazolone formation in these reactions is compatible with a course involving the initial formation of the quinazoline 1oxides (II; $R^1 = CH_2Ph$ or Ph, $R^2 = Me$), followed by ring opening of the derived hydrates (III; R1 = CH2Ph or Ph, $R^2 = Me$), and cyclisation of the resulting N-acetylhydroxylamines (VIII; $R^1 = CH_2Ph$ or Ph, $R^2 = Ac$) or the corresponding hydroxylamino-amides (VIII; R1 = CH2Ph or Ph, $R^2 = H$). The presence of hydroxylamino-intermediates in these reactions may be inferred from the formation of a mixture of the indazolone (V; R = Ph) and the azocompound (VI) when the amide (I; $R^1 = Ph$, $R^2 = Me$) was warmed with sodium carbonate in aqueous ethanol. On the other hand the conversion of the amide (I; R¹ = CH₂Ph, $R^2 = Me$) under similar conditions into a mixture of the azoxy-compound (VII) and the hydrazone (XI), requires the additional presence of the nitrosoamide (IX) readily produced by mild oxidation4 of the hydroxylamine (VIII; $R^1 = CH_2Ph$, $R^2 = H$) in the alkaline medium. Moreover ring opening of a 1-hydroxyindazolone (X) derivable from the nitrosoamide (IX) by cyclisation, is a plausible course for the formation of the hydrazone (XI). Such a course finds analogy in the known3,5 base-catalysed ring scission of 1-hydroxyindolinones and is further substantiated by the conversion of the readily accessible o-nitrosobenzanilide6 in warm aqueous ethanolic sodium carbonate into azobenzene 2-carboxylic acid. Attempts to isolate the intermediate 1-hydroxyindazolones from reactions of this type have so far been unsuccessful.

We thank the S.R.C. for a research Studentship (to T.W.M.S.).

(Received, December 12th, 1968; Com. 1699.)