Base-catalysed Transformations of NN-Disubstituted o-Nitrobenzamides

By T. W. M. Spence and G. Tennant*
(Chemistry Department, The University, West Mains Road, Edinburgh 9)

In the formation ${ }^{1}$ of 2 -alkoxy-1-hydroxyquinazolones by base-catalysed cyclisation of N -cyanomethyl- o-nitrobenzamide ($\mathrm{I} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$), interaction of the nitro-group with the side-chain cannot be preceded by isomerisation to an aci-nitro-tautomer. ${ }^{2}$ Cyclisation reactions of this type ${ }^{2,3}$ provide strong evidence for the ability of the intact nitro-group to function as the electrophile in aldol-type condensations. Further support for this contention has now been obtained from a study of the base-catalysed reactions of a series of $N N$-disubstituted- O-nitrobenzamides (I).

Treatment of the amides $\left(\mathrm{I} ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{CH}_{2} \mathrm{Ph}\right.$, or Ph , $\mathrm{R}^{2}=\mathrm{H}$) with a variety of basic catalysts (ethanolic sodium ethoxide; aqueous sodium hydroxide; piperidine) afforded consistently high yields of products subsequently identified
as the 1-hydroxyquinazolinediones (IV; $\mathrm{R}=\mathrm{Me}, \mathrm{CH}_{2} \mathrm{Ph}$, or $\mathrm{Ph})$. These potentially tautomeric heterocycles are presumably derived from an initially formed cyanoquinazoline 1-oxide (II; $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{CH}_{2} \mathrm{Ph}$, or $\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{CN}$) by conversion into, and loss of hydrogen cyanide from, an adduct (III; $\mathrm{R}^{2}=\mathrm{CN}$). ${ }^{1}$ The higher yields of cyclised products obtained from the amides ($\mathrm{I} ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{CH}_{2} \mathrm{Ph}$, or Ph , $\mathrm{R}^{2}=\mathrm{H}$) compared ${ }^{1}$ with the parent compound ($\mathrm{I} ; \mathrm{R}^{1}=$ $\mathrm{R}^{2}=\mathrm{H}$) may be attributed to the enhanced acidity of the methylene group in the former, and to the absence of side reactions stemming from the presence in the side-chain of a competing nucleophilic centre (i.e. $N-H$).

In contrast, the methyl-substituted amides ($\mathrm{I} ; \mathrm{R}^{1}=$ $\mathrm{CH}_{2} \mathrm{Ph}$ or $\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}$) warmed with sodium ethoxide in ethanol afforded the indazolone derivatives ($\mathrm{V} ; \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$

(I)

(III)

(V)

(VI)

(VIII)

(VII)

(IX)

(XI)
or Ph). Since under similar conditions the amide ($\mathrm{I} ; \mathrm{R}^{1}=$ $H, R^{2}=\mathrm{Me}$) is converted into the oxide (II; $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}$), indazolone formation in these reactions is compatible with a course involving the initial formation of the quinazoline 1oxides (II; $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}$ or $\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}$), followed by ring opening of the derived hydrates (III; $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}$ or Ph , $\mathrm{R}^{2}=\mathrm{Me}$), and cyclisation of the resulting N-acetylhydroxylamines (VIII; $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}$ or $\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Ac}$) or the corresponding hydroxylamino-amides (VIII; $\mathrm{R}^{\mathbf{1}}=\mathrm{CH}_{2} \mathrm{Ph}$ or Ph , $\left.\mathrm{R}^{2}=\mathrm{H}\right) . \quad$ The presence of hydroxylamino-intermediates in these reactions may be inferred from the formation of a mixture of the indazolone ($\mathrm{V} ; \mathrm{R}=\mathrm{Ph}$) and the azocompound (VI) when the amide ($\mathrm{I} ; \mathrm{R}^{\mathbf{1}}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}$) was warmed with sodium carbonate in aqueous ethanol. On the other hand the conversion of the amide ($\mathrm{I} ; \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}$, $\mathrm{R}^{2}=\mathrm{Me}$) under similar conditions into a mixture of the azoxy-compound (VII) and the hydrazone (XI), requires the additional presence of the nitrosoamide (IX) readily produced by mild oxidation ${ }^{4}$ of the hydroxylamine (VIII; $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{\mathbf{2}}=\mathrm{H}$) in the alkaline medium. Moreover ring opening of a l-hydroxyindazolone (X) derivable from the nitrosoamide (IX) by cyclisation, is a plausible course for the formation of the hydrazone (XI). Such a course finds analogy in the known ${ }^{3,5}$ base-catalysed ring scission of l-hydroxyindolinones and is further substantiated by the conversion of the readily accessible o-nitrosobenzanilide ${ }^{6}$ in warm aqueous ethanolic sodium carbonate into azobenzene 2 -carboxylic acid. Attempts to isolate the intermediate 1-hydroxyindazolones from reactions of this type have so far been unsuccessful.

We thank the S.R.C. for a research Studentship (to T.W.M.S.).
(Received, December 12th, 1968; Com. 1699.)
${ }^{1}$ G. Tennant and K. Vaughan, J. Chem. Soc. (C), 1966, 2287.
${ }^{2}$ G. Tennant, J. Chem. Soc., 1964, 2666.
${ }^{3}$ J. D. Loudon and G. Tennant, Quart. Rev., 1964, 18, 409.
${ }^{4}$ E. Bamberger, Ber., 1894, 27, 1548.
${ }^{5}$ G. Heller and W. Boessneck, Ber., 1922, 55, 474.
${ }^{6}$ F. Sachs and R. Kempf, Ber., 1902, 35, 2704.

